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This study first focuses on comprehensive evaluating three widely used satellite precipitation products
(TMPA 3B42V6, TMPA 3B42RT, and CMORPH) with a dense rain gauge network in the Mishui basin
(9972 km?) in South China and then optimally merge their simulated hydrologic flows with the semi-dis-
tributed Xinanjiang model using the Bayesian model averaging method. The initial satellite precipitation
data comparisons show that the reanalyzed 3B42V6, with a bias of —4.54%, matched best with the rain
gauge observations, while the two near real-time satellite datasets (3B42RT and CMORPH) largely under-
estimated precipitation by 42.72% and 40.81% respectively. With the model parameters first bench-
marked by the rain gauge data, the behavior of the streamflow simulation from the 3B42V6 was also
the most optimal amongst the three products, while the two near real-time satellite datasets produced
deteriorated biases and Nash-Sutcliffe coefficients (NSCEs). Still, when the model parameters were recal-
ibrated by each individual satellite data, the performance of the streamflow simulations from the two
near real-time satellite products were significantly improved, thus demonstrating the need for specific
calibrations of the hydrological models for the near real-time satellite inputs. Moreover, when optimally
merged with respect to the streamflows forced by the two near real-time satellite precipitation products
and all the three satellite precipitation products using the Bayesian model averaging method, the resulted
streamflow series further improved and became more robust. In summary, the three current state-of-the-
art satellite precipitation products have demonstrated potential in hydrological research and applica-
tions. The benchmarking, recalibration, and optimal merging schemes for streamflow simulation at a
basin scale described in the present work will hopefully be a reference for future utilizations of satellite
precipitation products in global and regional hydrological applications.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

precipitation products at relatively high spatial and temporal
resolutions.

Precipitation is arguably the vital input data for various hydro-
logic models. Obtaining accurate and reliable precipitation data is
thus very important for local, regional and global hydrologic predic-
tion and water resources management. Traditionally, the acquisi-
tion of precipitation data is often limited to ground-based
observations (using rain gauges and/or ground-based weather
radars) although these surface-based observations usually suffer
from low spatial coverage, especially in developing regions where
ground-based observations are rare or even unavailable. For the
past dozen years, a great deal of effort has been devoted to
the development of space-based new observation platforms and
retrieval methods for estimating accurate and globally available
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Recently, a number of new global high resolution satellite-
based precipitation products have been operationally available,
including the Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks (PERSIANN;
Sorooshian et al., 2000), the National Oceanic and Atmospheric
Administration Climate Prediction Center morphing technique
product (CMORPH; Joyce et al., 2004), the PERSIANN-Cloud Classi-
fication System estimation (PERSIANN-CCS; Hong et al., 2004), the
Naval Research Laboratory Global Blended-Statistical Precipitation
Analysis data (NRL-Blend; Turk and Miller, 2005), the Global
Satellite Mapping of Precipitation (GSMaP; Kubota et al., 2007),
the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite
Precipitation Analysis products (TMPA; Huffman et al., 2007), and
so on. These satellite precipitation products have provided
quasi-global high-temporal (<3 h) and spatial (<0.25°) resolution
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precipitation maps. The PERSIANN has been generated from March
2000 to present; the CMORPH has been produced from December
2002 to present; the PERSIANN_CCS has been utilized from 2005 to
present; the NRL-Blend has been generated from mid-2000 to pres-
ent; the GSMaP has been used since 2005; and the TMPA 3B42RT
and 3B42V6 have been available since January 2002 and January
1998, respectively. As anticipated, the expended follow-on project
of the TRMM, the Global Precipitation Measurement (GPM; http://
pmm.nasa.gov/GPM) mission will provide more coverage and more
accurate precipitation product so as to further improve our capac-
ity of retrieving precipitation from space.

Nevertheless, satellite precipitation products need be evaluated
against in situ observations and then calibrated to various hydro-
logical models before full-scale deployment and application to dai-
ly and sub-daily hydrological operations. Direct comparisons of
various satellite precipitation products with a dense rain gauge
network and/or ground radar observations have been conducted
(Tian et al., 2007; Chokngamwong and Chiu, 2008; Dinku et al.,
2008; Yu et al., 2009; Jiang et al., 2010). On the other hand, numer-
ous studies have evaluated various satellite precipitation products
for streamflow simulation (Hong et al., 2007; Su et al., 2008; Stisen
and Sandholt, 2010; Yong et al., 2010, 2012; Behrangi et al., 2011).
There also have been some inter-comparison projects which aimed
to evaluate the performance of the satellite precipitation products.
Amongst, the most typical one is the Program of Evaluation of
High-Resolution Precipitation Products (PEHRPP; Turk et al,
2008) established by the International Precipitation Working
Group (IPWG). These studies and projects emphasized that satellite
precipitation products have certain accuracy and great potential
for hydrologic applications. It is important to note, however, that
different types of satellite precipitation data might have variable
accuracy and thus distinct hydrological utility in different regions.
This plays a role in determining which precipitation product is
most optimal for certain regions. The task at hand though proved
to be difficult because of the inconsistency among satellite obser-
vations and retrieval algorithms as well. How to identify these
optimal satellite products and how to achieve the best possible
streamflow simulation forced by a suite of satellite precipitation
products has been a challenge.

There have been some attempts that tried to improve the
streamflow simulation by merging multiple precipitation products.
Chiang et al. (2007) combined the gauge observations and satellite
precipitation products by a recurrent neural network (RNN) meth-
od to enhance the accuracy of the flood forecasting. Li and Shao
(2010) used a nonparametric kernel smoothing method to merge
satellite rainfall estimates and rain gauge observations to improve
the accuracy of the regional rainfall estimation. Yilmaz et al. (2010)
merged the multi-precipitation products by minimizing the simu-
lated land surface parameter (soil moisture, temperature, etc.) er-
rors with the downhill simplex method to improve the land
surface simulation. Gebregiorgis and Hossain (2011) used a priori
hydrological model predictability method to merge three near
real-time satellite precipitation products to improve the hydro-
logic prediction. These methods are conducted from merging the
different satellite precipitation products or with the gauge obser-
vations. However, when the satellite precipitation products exist-
ing large deviations and/or there are no rain gauge observations,
these methods may be noneffective. The hydrological model can
tolerate the errors of the satellite precipitation products through
its nonlinear system by adjusting the model parameters (Stisen
and Sandholt, 2010; Bitew and Gebremichael, 2011). So merging
the simulations from multi-satellite precipitation products is a no-
vel method to improve the streamflow simulations or predictions,
especially for the data-spare and ungauged basins.

The current study thus focused on two aspects. First, three most
widely used global high-resolution satellite precipitation products

(TMPA 3B42V6, TMPA 3B42RT, and CMORPH, 3 h and 0.25°) were
compared in detail with the dense rain gauge network observa-
tions and their streamflow simulation utilities were comprehen-
sively evaluated using the semi-distributed Xinanjiang mode
during the period of 2003-2008 in the Mishui basin (9972 km?)
in South China. Second, the simulated streamflows from the differ-
ent satellite precipitation products were optimally merged using
the Bayesian model averaging method (BMA; Ajami et al., 2007;
Duan et al., 2007), through which the advantages of the simula-
tions from different satellite precipitation products were capital-
ized. The present work is organized as follows: Section 2
describes the detailed methodology; Section 3 introduces the study
area and the data sets used; Section 4 presents the results and dis-
cussion; and Section 5 draws the conclusions.

2. Methodology
2.1. Evaluation statistics

To qualitatively evaluate the three satellite precipitation prod-
ucts with dense surface rain gauge observations, five widely used
validation statistical indices were adopted in the present study.
The mean error (ME) was used to scale the average difference be-
tween the satellite precipitation and rain gauge observations,
whereas the mean absolute error (MAE) was used to represent
the average magnitude of the error. The relative bias (BIAS) de-
scribes the systematic bias of the satellite precipitation. The corre-
lation coefficient (CC) was used to assess the agreement between
the satellite precipitation and rain gauge observations. The root
mean square error (RMSE), which gives a greater weight to the lar-
ger errors relative to MAE, was used to measure the average error
magnitude. The formulas are given by:

1 n
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where n is the total amount of rain gauge or satellite precipitation
data; S; and G; are the ith values of the satellite precipitation data
and rain gauge observations, respectively; and S and G are the mean
values of the satellite precipitation data and rain gauge observa-
tions, respectively.

In addition, three categorical statistical indices, including the
probability of detection (POD), false-alarm rate (FAR), and critical
success index (CSI) were adopted to measure the correspondence
between the satellite precipitation products and rain gauge
observations. POD, also known as the hit rate, represents how
often the rain occurrences are correctly detected by the satellite.
FAR denotes the fraction of cases in which the satellite records
precipitation when the rain gauges do not. CSI shows the overall
fraction of precipitation events correctly diagnosed by the
satellite.
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Rain or no-rain events were defined by the value of the thresh-
old, and a precipitation threshold of 1.0 mm was used in this study.
The perfect values of POD, FAR and CSI were 1, 0, and 1, respec-
tively. The formulas are given by:

ty
POD = 6
ty +tu ( )
tr
FAR = 7
ty + tr @
CSI = _ (8)
ty + ty + tr

where H, M, and F are different cases: H, observed rain correctly de-
tected; M, observed rain not detected; F, rain detected but not ob-
served; and ty, ty and tr are the times of occurrence of the
corresponding case; the details of these are referred to Ebert et al.
(2007).

The validation statistical indices of CC, BIAS and the Nash-Sutc-
liffe coefficient (NSCE; Nash and Sutcliffe, 1970) were employed to
evaluate the hydrologic model performance based on the observed
and simulated streamflow series. CC, BIAS and NSCE jointly mea-
sure the consistency of the simulated and observed streamflow
series both in terms of the temporal distribution and amount.
The formula for NSCE is given by:

NSCE =1 — Z?:l (Qsim(i) — ngs(i) g
Z?ﬂ (Qobs(i) - Qobs)2
where Q,ps(i) is the observed runoff at time step i, Qs;m(i) is the sim-

ulated runoff at time step i, Q,p is the mean value of the observed
values, and n is the number of data points.

9)

2.2. Hydrological model and calibration

The Xinanjiang model is a well known physically based concep-
tual hydrological model (Zhao, 1992) that has been successfully
and widely used in the humid and semi-humid regions of China
since its development in the 1970s. Recently, the runoff generation
method of this model has been widely used in distributed hydro-
logical simulations. The core of the model, which describes their
spatial heterogeneity of tension water and free water within a ba-
sin based on the storage capacity distribution curves, was em-
ployed by the three-layer Variable Infiltration Capacity (VIC-3L)
model (Liang et al., 1994, 1996).

In the present work, a gridded-structured Xinanjiang model for
streamflow simulation was constructed. The simulation was per-
formed by computing the runoff and dividing the runoff types with-
in each grid. The slope and river network convergence processes
were then integrated to obtain the streamflow series of the hydro-
logic station. The gridded Xinanjiang model was operated daily with
a 0.25° x 0.25° spatial resolution from January 2003 to December
2008. The Xinanjiang model has 16 parameters and their physical
meanings, numeric ranges and default values are shown in Table 1.

The model parameters were automatically calibrated using the
Shuffled Complex Evolution Metropolis (SCEM-UA, Vrugt et al.,
2003). The SCEM-UA was built upon the principles of the Shuffled
Complex Evolution (SCE-UA), an effective and efficient global opti-
mization technique developed by Duan et al. (1994). The SCEM-UA
combined the strengths of the Monte Carlo Markov Chain sampler
with the concept of complex shuffling from SCE-UA to form an
algorithm that not only provides the most probable parameter
set, but also estimates the uncertainty associated with estimated
parameters. The SCEM-UA was able to simultaneously identify
the most likely parameter set and its associated posterior probabil-
ity distribution in every model run (Ajami et al., 2007). In this

study, the initial samples and the compute times were set at
5000 and 10,000, respectively.

2.3. Simulation scenarios

Model calibration is a process that optimizes parameters to ob-
tain the best simulation of observed natural runoff for certain forc-
ing data. Different forcing data have different temporal and spatial
biases compared with the unknown true values. The model param-
eters may present some variations when used to simulate the
streamflow (Stisen and Sandholt, 2010). Different forcing data
could result in similar streamflow simulations after calibration
based on each input data. In the current study, two simulation sce-
narios were thus set to evaluate the streamflow simulation utility
of the three satellite precipitation products. In Scenario I, the
Xinanjiang model parameters were calibrated with the rain gauge
precipitation measurements and the model runs were repeated
with the three satellite precipitation products as inputs. In Sce-
nario II, these parameters were recalibrated with each of the satel-
lite precipitation products. The simulations from Scenario I were
then merged using the BMA method.

2.4. Merging method

The BMA is a probabilistic scheme for model combinations that
derives the consensus prediction from competing predictions using
likelihood measures as model weights (Ajami et al., 2007). The
BMA weights are directly bound with the individual model simula-
tion. A more robust and stable result can be obtained when the
BMA method is used to combine the different simulations. Each sa-
tellite precipitation product has its own merit in terms of capturing
real rainfall events. With different satellite precipitation products
as input forcing data, the hydrological model can generate various
streamflow series with different accuracy. Merging the different
satellite data forced streamflow simulations using the BMA meth-
od is hence considered a novel method that may generate a better,
more stable streamflow series.

3. Study area and data
3.1. Study area

Mishui basin, a tributary of the Xiangjiang River with a drainage
area of 9972 km? above the Ganxi hydrologic station, was selected
as the study area (Fig. 1). The basin is located southeast of Hunan
Province in South China and extends from longitudes 112.85°E to
114.20°E and latitudes 26.00°N to 27.20°N. It has a complex topog-
raphy, with elevations ranging from 49 m to 2093 m above sea le-
vel. The basin’s land use is composed of forest and shrubs (54.4%),
grassland (33.5%), cropland (11.8%) and urban and water (0.3%).
The climate is a humid subtropical monsoon type, with average
temperature of approximately 18.0 °C, minimum monthly temper-
ature of approximately 1.5 °C, maximal monthly temperature of
approximately 32.0 °C, and mean annual precipitation of approxi-
mately 1561 mm, respectively. The temporal and spatial distribu-
tion of the precipitation within the Mishui Basin is uneven due
to the atmospheric circulation and since most of the annual precip-
itation occurs between April and September. In these months, par-
ticularly in June, basin-wide heavy rains continuously occur,
thereby resulting in floods.

3.2. Datasets

The datasets used in the current study include three satellite
precipitation products: named TMPA 3B42V6, TMPA 3B42RT, and
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Table 1

Parameters commonly calibrated in the Xinanjiang model, their physical meanings, numeric ranges and default values.
Parameter Physical meaning Numeric range Default value Source
Kc Ratio of potential evapotranspiration to pan evaporation 0.5-1.5 1 Calibrated
WUM Water capacity in the upper soil layer (mm) 10-40 20 Calibrated
WLM Water capacity in the lower soil layer (mm) 50-90 60 Calibrated
WDM Water capacity in the deeper soil layer (mm) 10-70 60 Calibrated
B Exponent of the tension water capacity curve 0.1-0.5 0.3 Calibrated
IM Impervious area accounts for the whole basin area ratio 0-0.1 0.005 LULC data
C Coefficient of deep evapotranspiration 0.1-0.3 0.2 Calibrated
EX Exponent of the free water capacity curve 1-1.5 1.2 Calibrated
SM The free water capacity of the surface soil layer (mm) 10-60 20 Calibrated
KIO Outflow coefficients of the free water storage to interfolw 0.1-0.5 0.4 KIO = 0.7-KGO
KGO Outflow coefficients of the free water storage to groundwater 0.1-0.5 0.3 Calibrated
CIo Recession constant of the lower interflow storage 0.1-0.9 0.5 Calibrated
CGO Daily recession constant of groundwater storage 0.9-0.999 0.9 Calibrated
CSo Recession constant for channel routing 0.1-0.5 0.2 Calibrated
KE Slot storage coefficient (h) 20-24 24 Calibrated
XE Flow proportion factor 0.1-0.5 0.5 Calibrated
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Fig. 1. Map of the Mishui Basin in South China.

CMORPH, ground rain gauge data, potential evaporation data, and
streamflow observations at the outlet of the basin.

The 3B42V6 and 3B42RT estimates were provided by TMPA by
combining information from multiple satellites at 3 h temporal
and 0.25° x 0.25° spatial resolutions, covering the global latitude
band from over 50°N to 50°S and 60°N to 60°S respectively. The
3B42RT uses the TRMM Combined Instrument (TCI) dataset, which
includes the TRMM precipitation radar (PR) and TRMM Microwave
Imager (TMI), to calibrate precipitation estimates derived from
available Low Earth Orbit (LEO) microwave (MW) radiometers.
The 3B42RT then merges all of the estimates at 3 h intervals; and
the gaps in the analyses are filled using Geosynchronous Earth Or-
bit (GEO) infrared (IR) data regionally calibrated to the merged
MW product. The LEO MW data used in TMPA include: Special Sen-
sor Microwave Imager (SSM/I) on Defense Meteorological Satellite
Program (DMSP) 13, 14 and 15 satellites, Advanced Microwave
Scanning Radiometer-Earth Observing System (AMSR-E) on Aqua,
and the National Oceanic and Atmospheric Administration

(NOAA)-15, 16, and 17 satellites. The gap-filling IR-based estimates
are merged from five GEO satellites (GOES-8 and 10, Meteosat-5
and 7, and GMS-5) into half-hourly 4 km x 4 km equivalent lati-
tude-longitude grids (Janowiak et al., 2001). The 3B42V6 adjusts
the monthly accumulations of the 3-h fields from 3B42RT based
on a monthly gauge analysis, including the GPCP 1° x 1° monthly
rain gauge analysis and the Climate Assessment and Monitoring
System (CAMS) 0.5° x 0.5° monthly rain gauge analysis. The
3B42RT is therefore, a near real-time (approximately 3-9 h after
real time) product, and 3B42V6 is a post real-time (approximately
10-15 d after the end of each month) research-quality product. The
data can be freely downloaded from the following website: http://
trmm.gsfc.nasa.gov/.

The CMORPH technique uses the directness of the MW observa-
tions with the cloud motion derived from the IR data to estimate
precipitation, it is extremely flexible wherein precipitation esti-
mates from any MW satellite source can be incorporated (Joyce
et al.,, 2004). The MW observations used in CMORPH include:
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SSM/I on DMSP 13, 14 and 15 satellites, AMSR-E on Aqua, AMSU-B
on NOAA-15, 16, and 17 satellites, and TMI on TRMM. The IR data
used in CMORPH come from the same satellites with TMPA. Cur-
rently, the CMORPH products have two high-resolution versions
as follows: one with temporal and spatial resolutions of 3 h and
0.25° respectively, and the other with higher temporal and spatial
resolutions of 30 min and 8 km respectively, with both data cover-
ing the area from 60°S to 60°N globally. In the present research, the
former CMORPH data, being released as an official version, was
used. The data can be accessed from the following website: ftp://
ftp.cpc.ncep.noaa.gov/precip/global_CMORPH/3-hourly_025deg.

For the two near real-time satellite precipitation products
(TMPA 3B42RT and CMORPH), they were estimated form the same
data sets except for the TRMM PR used in the TMPA 3B42RT and
they both have the same spatial coverage of 60°S to 60°N globally.
The main difference between the 3B42RT and CMORPH is just that
they adopt different algorithms to retrieve the precipitation.

The observed daily precipitation data from 2003 to 2008 were
derived from 35 rain gauge stations in the Mishui basin, roughly
two rain gauges within one 0.25° grid, and the same period time
series of the daily streamflow and potential evapotranspiration
data were collected from the Ganxi hydrologic station and Wulipai
evaporation station, respectively. The Inverse Distance Weighting
(IDW; Bartier and Keller, 1996) of the three nearest rain gauges
was used to obtain the spatial distributed precipitation database
of the Mishui basin. The 30 arc-second global digital elevation
model data were obtained from the US Geological Survey and the
vegetation-type data were obtained from the International Geo-
sphere-Biosphere Program.

The three satellite precipitation products with a 3 h temporal
resolution were aggregated to produce the accumulated daily
and monthly precipitation for comparison with the interpolated
rain gauge data and streamflow simulation. The study period was
from 2003 to 2008. Because of this, data from the three satellite
precipitation products over 6 years were roundly compared using
the evaluation indices and hydrological model described in Sec-
tion 2 in the Mishui Basin.

4. Results and discussion
4.1. Comparison of satellite precipitation products

To directly compare the three satellite precipitation products
with the dense rain gauge observations, the daily basin averaged
precipitation time series of the gauge observations and the three
satellite precipitation products for the period of 2003-2008 are
shown in Fig. 2. The 3B42V6 is shown to have a similar time series
with little bias and good CC compared to the gauge observations.
The 3B42RT and CMORPH have seriously underestimated the rain-
fall amount, with biases of —42.72% and —40.81%, respectively.
Based on the daily statisticses of areal-based basin gauge and satel-
lite precipitation, as shown in Table 2, 3B42V6 obtained the best
values of ME (—-0.19 mm), BIAS (—4.54%), POD (0.71), and CSI
(0.64), whereas CMORPH obtained the best values of MAE
(2.57 mm), CC (0.80), RMSE (6.26 mm) and FAR (0.08). From the
daily time series plot and evaluation indices analysis, we can infer
that 3B42V6 has a comprehensive better estimation of precipita-
tion than 3B42RT and CMORPH, then CMORPH has a less obvious
better estimating than 3B42RT.

To gain further information on the monthly precisions and vari-
ations of the three satellite precipitation products, the monthly ba-
sin averaged precipitation time series of the gauge observations
and the three satellite precipitation products for the same period
with the daily series are shown in Fig. 3. Numbers of similar intu-
itive ideas are shown in comparison with Fig. 2. At the monthly

time scale, the 3B42V6 has perfect fitting with the gauge values ex-
cept the heavy rainfall in August 2007, and the 3B42RT and
CMORPH both have significant underestimation of the rainfall.
From the monthly statistics of areal-based basin gauge and satel-
lite precipitation products (Table 2), 3B42V6 was observed to ob-
tain all the best values of ME (—5.90 mm), MAE (23.77 mm), BIAS
(—4.54), CC (0.94) and RMSE (33.94 mm).

The combinations of the daily and monthly direct analyses com-
parisons suggest that the 3B42V6 data has considerably improved
the monthly precision with a monthly bias adjusted using a global
rain gauge analysis data. The monthly bias adjusted method is still
imperfect as it could not solve the problems of the daily and sub-
daily FAR and missed detection of the rainfall events existed in
the 3B42RT and it thus may result in poor detection and estimation
of precipitation extent and intensity, particularly during extreme
events. The accuracy of the 3B42V6 for the daily and sub-daily
time-scale distribution still should provide an increasing possibil-
ity to follow the real rainfall situation.

Fig. 4 shows the frequency distribution of daily precipitation in
different intensities and their relative contributions to each rainfall
event. All the three satellite precipitation products overestimated
the occurrence frequency of the no rain event, with frequency of
approximately 40%, while the frequency of the gauge observations
is only approximately 25%. In terms of 3B42VG6, it has an underes-
timation of the small and moderate rainfall events (0-1, 1-5, 5-10,
and 10-20 mm/day) both at occurrence frequency and contribu-
tion, while it has an overestimation of the heavy rainfall events
(20-30, and >30 mm/day). For 3B42RT and CMORPH, they both
underestimated the occurrence frequencies of all the different pre-
cipitation intensities; and there are some differences for their con-
tributions compared with the gauge observations: the contribution
of >30 mm/day for gauge is 31.38%, while for 3B42RT it is only
17.29%, and for CMORPH it is just 21.53%. In general, the figure
shows us that the pure satellite precipitation products (3B42RT
and CMORPH) are difficult to reflect the small rainfall events (no
rain and 0-1 mm/day) and heavy rainfall events (=30 mm/day)
in Mishui basin, and the monthly bias adjusted can improve the
frequency and contribution distributions of the near real-time sa-
tellite precipitation products.

4.2. Streamflow simulation Scenario I: model calibration with rain
gauge data

To evaluate the streamflow prediction utility of the three satel-
lite precipitation products, their effects on streamflow simulations
when the model was calibrated based on rain gauge data was first
analyzed. The periods of 2003-2005 and 2006-2008 were selected
as the calibration and validation periods, respectively. The calibra-
tion was processed automatically with the objective function of
maximizing the likelihood function, and the model parameters
were selected in the experiential numerical range. Fig. 5 shows
the daily and monthly comparisons of the observed streamflow
with the simulated hydrograph showing the best model parameter
estimates for both the calibration and validation periods. Overall, a
good agreement exists between the observed and simulated series
both in the daily and monthly time scales. The statistical indices,
which reflect model performances (with daily CC of 0.95 and
0.92, monthly CC of 0.99 and 0.96, daily NSCE of 0.91 and 0.80,
monthly NSCE of 0.97 and 0.91, and BIAS of 1.56% and 5.33% for
the calibration period and validation period respectively, see
Tables 3 and 4) indicate that the gridded Xinanjiang model
captured key features of the observed hydrograph.

Based on the analysis of the calibration and validation simula-
tions from the rain gauge data, the model is believed to be suitably
robust in evaluating the utility of the satellite precipitation prod-
ucts for streamflow simulation. The calibrated gridded Xinanjiang
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Fig. 2. Daily basin averaged precipitation time series of the gauge observations and the three satellite precipitation products for the period of 2003-2008.

Table 2

Statisticses of areal-based basin gauge observations and satellite precipitation products both at daily and monthly time scales.
Precipitation products Mean ME MAE BIAS cC RMSE POD FAR CSI
Daily time series
Gauge 4.19 - - - - - - - -
3B42V6 4.00 -0.19 2.63 —4.54 0.78 6.42 0.71 0.13 0.64
3B42RT 2.40 -1.79 2.81 —42.72 0.76 6.80 0.58 0.13 0.54
CMORPH 2.48 -1.71 2.57 —40.81 0.80 6.26 0.61 0.08 0.58
Monthly time series
Gauge 127.57 - - - - - - - -
3B42V6 121.66 —-5.90 23.77 —4.54 0.94 33.94 - -
3B42RT 72.96 —54.61 56.85 —42.72 0.88 72.63 - - -
CMORPH 75.65 -51.91 57.73 —40.81 0.85 72.78 - - -

Table 3

Daily statistical measures of precipitation inputs and corresponding streamflows for the calibration and validation periods.*
Precipitation products Precipitation input Simulated streamflow (Scenario I) Simulated streamflow (Scenario II)

cC BIAS (%) cC NSCE BIAS (%) cC NSCE BIAS (%)

Calibration period
Gauge - - 0.95 0.91 1.56 - - -
3B42V6 0.81 -2.92 0.77 0.55 -3.52 0.77 0.57 —4.42
3B42RT 0.73 —42.95 0.67 0.11 —58.58 0.71 0.46 —4.66
CMORPH 0.81 —34.72 0.65 0.25 —48.34 0.70 043 4.18
BMA_2 - - - - - 0.73 0.50 -0.23
BMA_3 - - - - - 0.77 0.58 -1.67
Validation period
Gauge - - 0.92 0.80 533 - - -
3B42V6 0.77 -6.13 0.75 0.56 -4.18 0.76 0.57 0.59
3B42RT 0.78 —42.68 0.72 0.21 —65.39 0.79 0.57 -25.47
CMORPH 0.82 —45.93 0.69 0.18 -70.67 0.81 0.58 -17.60
BMA_2 - - - - - 0.81 0.60 -22.02
BMA_3 - - - - - 0.83 0.62 -14.22

2 Notation: In Scenario I, the model parameters is calibrated based on the rain gauge data, we calculated the statistical measures in calibration and validation periods
respectively just for corresponding comparison with Scenario II.
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Fig. 3. Monthly basin averaged precipitation time series of the gauge observations and the three satellite precipitation products for the period of 2003-2008.
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model was then forced by the three satellite precipitation products
as inputs during the period from 2003 to 2008. The simulation
from the 3B42V6 data, which had daily CC of 0.77 and 0.75,
monthly CC of 0.94 and 0.89, daily NSCE of 0.55 and 0.56, monthly
NSCE of 0.88 and 0.80, and BIAS of —3.52% and —4.18% for the cal-
ibration and validation periods, respectively, was shown to fit best
with the observed streamflow series amongst the three products
(see Fig. 6, Tables 3 and 4). Still, the simulation underestimated
some high peak flows in the rainy seasons and overestimated some
low peak flows in the dry seasons that were attributable to the
3B42V6 data uncertainty at the daily time scale (Fig. 2).

The simulations of the 3B42RT and CMORPH data significantly
underestimated most of the streamflow series because of their sys-
tematic underestimation of precipitation. The simulation from the
3B42RT had daily CC of 0.67 and 0.72, daily NSCE of 0.11 and 0.21
and BIAS of -58.58% and -65.39% for the calibration and

validation periods, respectively. The simulation from the CMORPH
had daily CC of 0.65 and 0.69, daily NSCE of 0.25 and 0.18, and BIAS
of —48.34% and —70.67% for the calibration and validation periods,
respectively (Table 3).

4.3. Streamflow simulation Scenario II: model calibration with each
satellite data

The streamflow simulation utility of the three satellite precipi-
tation products were assessed further by calibrating the model
with the corresponding satellite precipitation data. The calibration
and validation periods were same to that of Scenario I. Fig. 7 shows
the comparisons of the observed and simulated streamflows. Com-
bining the daily and monthly statistical analyses shown in Tables 3
and 4, the performances of the simulation from the two near
real-time satellite products have obviously improved after the
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Table 4

Monthly statistical measures of precipitation inputs and corresponding streamflows for the calibration and validation periods.

Precipitation products Precipitation input

Simulated streamflow (Scenario I)

Simulated streamflow (Scenario II)

cC BIAS (%) cC NSCE BIAS (%) cC NSCE BIAS (%)
Calibration period
Gauge - - 0.99 0.97 1.56 - - -
3B42V6 0.95 -2.92 0.94 0.88 -3.52 0.92 0.84 —4.42
3B42RT 0.87 —42.95 0.78 -0.23 -58.58 0.83 0.66 —4.66
CMORPH 0.84 —34.72 0.68 —0.04 —48.34 0.76 0.53 4.18
BMA_2 - - - - - 0.81 0.63 -0.23
BMA_3 - - - - - 0.87 0.75 -1.67
Validation period
Gauge - - 0.96 0.91 533 - - -
3B42V6 0.93 -6.13 0.89 0.80 —4.18 0.89 0.80 0.59
3B42RT 0.90 —42.68 0.87 -0.11 —65.39 0.93 0.75 —2547
CMORPH 0.89 —45.93 0.84 -0.25 —70.67 0.89 0.67 -17.60
BMA_2 - - - - - 0.92 0.73 -22.02
BMA_3 - - - - - 0.95 0.82 -14.22

parameters were recalibrated, whereas the simulation from the
3B42V6 data had minor changes. The simulation from the
3B42RT data had daily CC of 0.71 and 0.79, monthly CC of 0.83
and 0.93, daily NSCE of 0.46 and 0.57, monthly NSCE of 0.66 and
0.75, and BIAS of —4.66% and —25.47% for the calibration and val-
idation periods, respectively. The simulation from the CMORPH
data had daily CC of 0.70 and 0.81, monthly CC of 0.76 and 0.89,
daily NSCE of 0.43 and 0.58, monthly NSCE of 0.53 and 0.67, and
BIAS of 4.18% and —18.59% for the calibration and validation peri-
ods, respectively. The streamflow simulations from the 3B42RT
and CMORPH showed comparable results with the simulation from
the 3B42V6 except their bigger biases in validation period.

4.4, Merging the simulations using BMA

The streamflow simulations from different satellite precipita-
tion datasets have their respective advantages. At the daily time
scale, the 3B42V6 has the best CC (0.77) and NSCE (0.57), and
the CMORPH has the best BIAS (4.18%) in the calibration period;
and the CMORPH has the best CC (0.81) and NSCE (0.58), and the
3B42V6 has the best BIAS (0.59%) in the validation period. Merging
different kinds of simulations may generate a better and more sta-
ble streamflow series. In the current study, the feasibility of merg-
ing different streamflow series simulated from the three satellite
precipitation products was evaluated. Two different merging cases
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Fig. 6. Observed and simulated streamflows from the three satellite precipitation products with gauge calibrated parameters: (a) daily calibration period, (b) daily validation

period, and (c) monthly time series.

were conducted. In case one, we merged the streamflow simula-
tions from the two near real-time satellite precipitation products
(3B42RT and CMORPH) via the BMA method (which is named
BMA_2). This merging method will be useful for the future practical
near real-time streamflow forecasting. In case two, we merged the
streamflow simulations from the three satellite precipitation prod-
ucts using the BMA method (which is named BMA_3). This merging
method will be useful for the future water balance analysis, and
water resources planning and management.

Fig. 8 shows the comparison of the observed and merged
streamflow series using the BMA method, while Tables 3 and 4
show the calculated daily and monthly statistical indices. These
findings show that: the new merged streamflow series of BMA_2
has better daily CC (0.73 and 0.81), higher daily NSCE (0.50 and
0.60) and comparable BIAS (—0.23% and —22.02%) compared with
each individual satellite simulation from the two near real-time sa-
tellite precipitation products during both the calibration and vali-
dation periods; and the new merged streamflow series of BMA_3
has better daily CC (0.78 and 0.83), higher daily NSCE (0.58 and
0.62) and comparable BIAS (—1.67% and —14.22%) compared with
each individual satellite simulation from the three satellite precip-
itation products for the calibration and validation periods respec-
tively. For the monthly time series, the merged results are
similar to the best of the simulations from the single satellite pre-
cipitation product. The results show that the BMA merging method
effectively improved the daily streamflow series to a better and
more stable direction in terms of both CC and NSCE, though suf-
fered from the high biases of the 3B42RT and CMORPH in valida-
tion period. For the merged streamflow series, some high flows
for the flood seasons were still underestimated due to the inherited
relatively low spatial resolution of current TRMM-era satellite pre-
cipitation products.

4.5. Comprehensive analysis of the two simulation scenarios and the
merging results

The statistical indices of daily NSCE and BIAS for the validation
period from Table 3 were selected for the visual comparison of the
satellite streamflow simulations performance based on the two
simulation scenarios and BMA merged results, as shown in Fig. 9.
Comparing the simulations of the 3B42V6 with those of the
3B42RT and CMORPH based on rain gauge calibrated parameters,
the smaller rainfall bias of the 3B42V6 was found to be tolerated
by the error propagation and integration of the Xinanjiang model-
ling processes, whereas the bias of the streamflow simulation from
the 3B42R and CMORPH were larger than that of the 3B42V6. The
model recalibration had significantly improved the NSCE values
and reduced the BIAS values of the two near real-time satellite pre-
cipitation data sets compared with the performances based on the
rain gauge parameters. By contrast, the BMA merging method re-
sulted in better NSCE values (0.50 and 0.60) for the syncretic
streamflow series of BMA_2 compared with the former single bet-
ter values of 3B42RT (0.46) and CMORPH (0.58) for the calibration
period and validation period respectively; and better NSCE values
(0.58 and 0.62) for the syncretic streamflow series of BMA_3 com-
pared with the former single best values of 3B42V6 (0.57) and
CMORPH (0.58) for the calibration period and validation period
respectively. It was noted, however, that the merging of BMA_3
also resulted in a moderately decreased bias value from the single
best 3B42V6 during the validation period, likely due to the con-
tamination of two real-time satellite products. In the present work,
the merging approach demonstrated a positive transformation of
NSCE and BIAS. It was noted though that the merging approach still
suffered from the high variability of the two near real-time satellite
precipitation products.
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Table 5 shows the parameters of the gridded Xinanjiang model
calibrated with each specific precipitation data as input for the cal-
ibration period of 2003-2005, which are the mean values of the
10,000 groups of the calibrated parameters when the SCEM-UA
algorithm was converged. The variations of the model parameters
with respect to each different precipitation input were further ana-
lysed. Five parameters, including Kc, WUM, WLM, WDM, and C
were used in the evapotranspiration calculation. Kc is a ratio of po-
tential evapotranspiration to pan evaporation. When the Kc value
is increased, the calculated evapotranspiration also increases; con-
versely, the evapotranspiration decreases. For the much larger neg-
ative bias (underestimation) of the 3B42RT and CMORPH, the
recalibration reduced the Kc values for a good simulation of the
streamflow. WUM, WLM, and WDM refer to the water capacities
of the three soil layers, and C is the conversion coefficient of deep
evapotranspiration. These parameters have similar changes com-
pared with that of the Kc. The other parameters did not have obvi-
ous and regular changes. Because of this, the parameter
recalibration of each satellite precipitation product as well as the
improved performance of the streamflow simulation came at the
expense of decreasing the performance of the evapotranspiration
calculation by adjusting the sensitive model parameters that affect
the water balance. Bitew and Gebremichael (2011) also empha-
sized that this trade-off is an inevitable consequence of the error
in satellite precipitation estimates and the focus of the calibration
strategy.

4.6. Comparing with the findings of some other studies

In recent years, there have been many research attempts at con-
ducting an evaluation regarding the accuracy and the hydrological

prediction utility of the multi-satellite precipitation products.
Many of them draw similar conclusions as this study: the near
real-time pure satellite precipitation products exist varying bias
in different basins. The monthly bias adjusted research-quality
TMPA 3B42V6 data has much better precision compared to the
pure satellite precipitation products. When using the pure satellite
precipitation products with large bias to do streamflow simulation,
the parameter recalibrated based on corresponding satellite data
can improve the simulation performance of the streamflow. Yong
et al. (2010) pointed out that the biases of the 3B42V6 and
3B42RT in the Laohahe basin (with area of 18,112 km?, longitudes
94.5°W to 94.06°W and latitudes 35.85°N to 36.37°N) are 16.52%
and 76.94% respectively, the VIC-3L model can tolerate the non-
physical overestimation of the 3B42V6 and the 3B42RT has weak
hydrologic utility. Behrangi et al. (2011) found that the biases of
the 3B42V6, 3B42RT and CMORPH in the Illinois River basin (with
area of 1489 km?, longitudes 94.5°W to 94.06°W and latitudes
35.85°N to 36.37°N) are 1.7%, 34.5% and 40.1% respectively, and
the bias-adjustment and parameters recalibration are critical steps
in improving the applicability of the near real-time satellite precip-
itation products for streamflow simulation. Still, there are some
different findings with respect of the satellite-based precipitation
accuracy. For example, Bitew and Gebremichael (2011) discovered
that the biases of the 3B42V6, 3B42RT and CMORPH in a mountain
Gilgel Abay basin (with area of 1656 km?, longitudes 36.8°W to
37.4°W and latitudes 10.93°N to 11.38°N) are —64%, —29% and
—29% respectively. The 3B42V6 shows inconsistencies and the low-
est performance of the streamflow simulation. This may be due to
the low density of rain gauges in a complex terrain region used for
bias adjusted and the incapability of the merging algorithm to fac-
tor this.
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Table 5
Gridded Xinanjiang model parameter values obtained from the calibrated model with
different precipitation data as inputs for the calibration period of 2003-2005.

Parameters Gauge 3B42V6 3B42RT CMORPH
Kc 1.39 1.40 0.76 0.73
WUM 36.08 38.83 19.48 15.20
WLM 82.67 78.53 74.21 75.92
WDM 2443 25.56 18.82 19.49
B 0.49 0.39 0.47 0.31
C 0.27 0.15 0.19 0.13
Ex 1.30 1.25 1.10 1.30
SM 27.23 33.79 12.75 26.76
KGO 0.35 0.44 0.14 0.36
CIo 0.81 0.54 0.70 0.57
CGO 0.99 0.99 0.99 0.99
CSo 0.11 0.25 0.23 0.19
KE 20.36 20.28 20.39 20.41
XE 0.49 0.49 0.49 0.49

2 The parameter values are the mean values of the 10,000 groups of calibrated
parameters when the SCEM-UA algorithm was convergent.

5. Conclusions

Satellite precipitation products provide new kinds of input data
(i.e. uninterrupted and global coverage) for various hydrologic
models which are very important for regional and global hydro-
logic prediction and water resources management worldwide. This
is especially useful for data-spare and ungauged basins. In the cur-
rent study, the accuracy and the streamflow simulation utility of
three most widely used high-resolution satellite precipitation
products (TMPA 3B42V6, TMPA 3B42RT and CMORPH) which were
evaluated within the Mishui Basin, South China, and their simula-
tions were merged using the Bayesian model averaging method.
The analyses support the following conclusions:

In the Mishui basin, larger underestimation biases were ob-
served for the two near real-time satellite precipitation products,
and the 3B42V6, with a low bias of —4.54%, fitted best with the rain
gauge observations at a monthly scale, though with some modest
inconsistence at the daily time scale. When the gridded Xinanjiang
model was benchmarked by the rain gauge data, the performance
of streamflow simulations from the three satellite precipitation
products were compatible and obviously effected by their precipi-
tation forcing data quality.

Based on the error propagation and integration of the hydrolog-
ical modeling processes, the 3B42V6 had not just the best simula-
tion of the streamflow but also the forcing data uncertainty was
tolerated. This effectively reduced the error in streamflow simula-
tions, whereas the 3B42RT and CMORPH, due to their higher forc-
ing data uncertainty beyond the hydrological model’s tolerance
threshold, resulted in amplified error propagation into the stream-
flow simulation. After recalibrating the parameters for each spe-
cific satellite precipitation product, the significant negative biases
(i.e. underestimation) of both the 3B42RT and the CMORPH data
were effectively taken into account by the recalibrated parameters
for the streamflow simulation. These improved simulations of
streamflow, however, as a major compromise, notably worsened
the performance of the evapotranspiration calculation.

The optimal merging of the individual satellite streamflow sim-
ulations using the BMA method achieved the best CC and NSCE val-
ues of the streamflow series at the daily time scale for both the
calibration and validation periods. Still, the merging also resulted
in a moderately decreased bias value from the single best
3B42V6 result, particularly during the validation period. This was
likely caused from the high variability of the two near real-time sa-
tellite precipitation products. Overall, the merging approach dem-
onstrated a positive transformation of the NSCE and BIAS,
effectively averaging the bias. We plan to further investigate this

BMA merging approach in other basins, where the accuracies of
the three satellite precipitation products are similar; also we can
introduce more satellite precipitation products.

In summary, the three current state-of-the-art satellite precipi-
tation products have significant potential in hydrological research
and applications. The benchmarking, recalibration, and optimal
merging schemes using multi-satellite precipitation products for
streamflow simulation described in the present work will hope-
fully be a good reference for future utilizations of various satellite
precipitation products in global and regional hydrological applica-
tions. This would especially be the case for the data-sparse and
ungauged basins.
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